Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(49): eadh4179, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064560

RESUMO

Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.


Assuntos
Monóxido de Carbono , Complexo IV da Cadeia de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Domínio Catalítico , Monóxido de Carbono/química , Cristalografia , Oxirredução , Oxigênio/metabolismo
2.
J Am Chem Soc ; 145(29): 15754-15765, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163700

RESUMO

Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solution-phase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.

3.
Phys Rev Lett ; 125(22): 226001, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315438

RESUMO

Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer. We extract how translational and rotational kinetic energy is dispersed into the solvent. We also find that 85% of the primary radical pairs are confined to their original solvent cage and discuss how this influences the downstream recombination reactions.

4.
Biophys J ; 119(1): 87-98, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32562617

RESUMO

Intermediate species are hypothesized to play an important role in the toxicity of amyloid formation, a process associated with many diseases. This process can be monitored with conventional and two-dimensional infrared spectroscopy, vibrational circular dichroism, and optical and electron microscopy. Here, we present how combining these techniques provides insight into the aggregation of the hexapeptide VEALYL (Val-Glu-Ala-Leu-Tyr-Leu), the B-chain residue 12-17 segment of insulin that forms amyloid fibrils (intermolecularly hydrogen-bonded ß-sheets) when the pH is lowered below 4. Under such circumstances, the aggregation commences after approximately an hour and continues to develop over a period of weeks. Singular value decompositions of one-dimensional and two-dimensional infrared spectroscopy spectra indicate that intermediate species are formed during the aggregation process. Multivariate curve resolution analyses of the one and two-dimensional infrared spectroscopy data show that the intermediates are more fibrillar and deprotonated than the monomers, whereas they are less ordered than the final fibrillar structure that is slowly formed from the intermediates. A comparison between the vibrational circular dichroism spectra and the scanning transmission electron microscopy and optical microscope images shows that the formation of mature fibrils of VEALYL correlates with the appearance of spherulites that are on the order of several micrometers, which give rise to a "giant" vibrational circular dichroism effect.


Assuntos
Amiloide , Microscopia , Dicroísmo Circular , Conformação Proteica em Folha beta , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
5.
Elife ; 92020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32228856

RESUMO

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.


Plants adapt to the availability of light throughout their lives because it regulates so many aspects of their growth and reproduction. To detect the level of light, plant cells use proteins called phytochromes, which are also found in some bacteria and fungi. Phytochrome proteins change shape when they are exposed to red light, and this change alters the behaviour of the cell. The red light is absorbed by a molecule known as chromophore, which is connected to a region of the phytochrome called the PHY-tongue. This region undergoes one of the key structural changes that occur when the phytochrome protein absorbs light, turning from a flat sheet into a helix. Claesson, Wahlgren, Takala et al. studied the structure of a bacterial phytochrome protein almost immediately after shining a very brief flash of red light using a laser. The experiments revealed that the structure of the protein begins to change within a trillionth of a second: specifically, the chromophore twists, which disrupts its attachment to the protein, freeing the protein to change shape. Claesson, Wahlgren, Takala et al. note that this structure is likely a very short-lived intermediate state, which however triggers more changes in the overall shape change of the protein. One feature of the rearrangement is the disappearance of a particular water molecule. This molecule can be found at the core of many different phytochrome structures and interacts with several parts of the chromophore and the phytochrome protein. It is unclear why the water molecule is lost, but given how quickly this happens after the red light is applied it is likely that this disappearance is an integral part of the reshaping process. Together these events disrupt the interactions between the chromophore and the PHY-tongue, enabling the PHY-tongue to change shape and alter the structure of the phytochrome protein. Understanding and controlling this process could allow scientists to alter growth patterns in plants, such as crops or weeds.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X , Luz , Fitocromo/química , Sítios de Ligação , Deinococcus/química , Lasers , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica
6.
J Am Chem Soc ; 141(48): 19118-19129, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697078

RESUMO

The relation between the chemical structure and the mechanical behavior of molecular machines is of paramount importance for a rational design of superior nanomachines. Here, we report on a mechanistic study of a nanometer scale translational movement in two bistable rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked onto a polyether axle. The macrocycle can shuttle between an initial succinamide station and a 3,6-dihydroxy- or 3,6-di-tert-butyl-1,8-naphthalimide end stations. Translocation of the macrocycle is controlled by a hydrogen-bonding equilibrium between the stations. The equilibrium can be perturbed photochemically by either intermolecular proton or electron transfer depending on the system. To the best of our knowledge, utilization of proton transfer from a conventional photoacid for the operation of a molecular machine is demonstrated for the first time. The shuttling dynamics are monitored by means of UV-vis and IR transient absorption spectroscopies. The polyether axle accelerates the shuttling by ∼70% compared to a structurally similar rotaxane with an all-alkane thread of the same length. The acceleration is attributed to a decrease in activation energy due to an early transition state where the macrocycle partially hydrogen bonds to the ether group of the axle. The dihydroxyrotaxane exhibits the fastest shuttling speed over a nanometer distance (τshuttling ≈ 30 ns) reported to date. The shuttling in this case is proposed to take place via a so-called harpooning mechanism where the transition state involves a folded conformation due to the hydrogen-bonding interactions with the hydroxyl groups of the end station.


Assuntos
Hidrogênio/química , Rotaxanos/química , Amidas/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Naftalimidas/química , Prótons , Succinatos/química
7.
Sci Adv ; 5(7): eaaw1531, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328161

RESUMO

Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from Drosophila melanogaster (DmCry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events. Here, we use nano- to millisecond time-resolved x-ray solution scattering to reveal the light-activated conformational changes in DmCry and the related (6-4) photolyase. DmCry undergoes a series of structural changes, culminating in the release of the carboxyl-terminal tail (CTT). The photolyase has a simpler structural response. We find that the CTT release in DmCry depends on pH. Mutation of a conserved histidine, important for the biochemical activity of DmCry, does not affect transduction of the structural signal to the CTT. Instead, molecular dynamics simulations suggest that it stabilizes the CTT in the resting-state conformation. Our structural photocycle unravels the first molecular events of signal transduction in an animal cryptochrome.


Assuntos
Criptocromos/química , Criptocromos/metabolismo , Drosophila melanogaster/fisiologia , Drosophila melanogaster/efeitos da radiação , Luz , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos da radiação , Animais , Domínio Catalítico , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Biológicos , Transdução de Sinais/efeitos da radiação , Análise Espectral , Relação Estrutura-Atividade
8.
J Biol Chem ; 293(21): 8161-8172, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29622676

RESUMO

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr263) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr263 hydroxyl destabilizes the ß-sheet conformation of the tongue. This allowed the phytochrome to adopt an α-helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr263 in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.


Assuntos
Proteínas de Bactérias/química , Deinococcus/metabolismo , Fenilalanina/química , Fitocromo/química , Conformação Proteica , Tirosina/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Fenilalanina/metabolismo , Fitocromo/metabolismo , Transdução de Sinais , Tirosina/metabolismo
9.
Nat Commun ; 8(1): 2206, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263325

RESUMO

Synthetic molecular machines are promising building blocks for future nanoscopic devices. However, the details of their mechanical behaviour are in many cases still largely unknown. A deeper understanding of mechanics at the molecular level is essential for the design and construction of complex nanodevices. Here, we show that transient two-dimensional infrared (T2DIR) spectroscopy makes it possible to monitor the conformational changes of a translational molecular machine during its operation. Translation of a macrocyclic ring from one station to another on a molecular thread is initiated by a UV pulse. The arrival of the shuttling macrocycle at the final station is visible from a newly appearing cross peak between these two moieties. To eliminate spectral congestion in the T2DIR spectra, we use a subtraction method applicable to many other complex molecular systems. The T2DIR spectra indicate that the macrocycle adopts a boat-like conformation at the final station, which contrasts with the chair-like conformation at the initial station.

10.
Nat Commun ; 8(1): 284, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28819239

RESUMO

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a template for signal transduction in sensor histidine kinases.Sensor histidine kinases (SHK) consist of sensor, linker and kinase modules and different models for SHK signal transduction have been proposed. Here the authors present nano- to millisecond time-resolved X-ray scattering measurements, which reveal a structural mechanism for kinase domain activation in SHK.


Assuntos
Proteínas de Bactérias/química , Histidina Quinase/química , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Histidina Quinase/metabolismo , Luz , Modelos Moleculares , Nanotecnologia , Domínios Proteicos/efeitos da radiação , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Structure ; 25(6): 933-938.e3, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28502782

RESUMO

Light-oxygen-voltage (LOV) receptors are sensory proteins controlling a wide range of organismal adaptations in multiple kingdoms of life. Because of their modular nature, LOV domains are also attractive for use as optogenetic actuators. A flavin chromophore absorbs blue light, forms a bond with a proximal cysteine residue, and induces changes in the surroundings. There is a gap of knowledge on how this initial signal is relayed further through the sensor to the effector module. To characterize these conformational changes, we apply time-resolved X-ray scattering to the homodimeric LOV domain from Bacillus subtilis YtvA. We observe a global structural change in the LOV dimer synchronous with the formation of the chromophore photoproduct state. Using molecular modeling, this change is identified as splaying apart and relative rotation of the two monomers, which leads to an increased separation at the anchoring site of the effector modules.


Assuntos
Bacillus subtilis/química , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Espalhamento de Radiação , Transdução de Sinais , Raios X
12.
Sci Rep ; 6: 35279, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756898

RESUMO

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.


Assuntos
Cristalografia por Raios X , Deinococcus/química , Fitocromo/química , Conformação Proteica , Cristalização , Temperatura
13.
J Phys Chem B ; 120(43): 11151-11158, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27723346

RESUMO

Small proteins provide good model systems for studying the fundamental forces that control protein folding. Here, we investigate the folding dynamics of the 28-residue zinc-finger mutant FSD-1, which is designed to form a metal-independent folded ßßα-motif, and which provides a testing ground for proteins containing a mixed α/ß fold. Although the folding of FSD-1 has been actively studied, the folding mechanism remains largely unclear. In particular, it is unclear in what stage of folding the α-helix is formed. To address this issue we investigate the folding mechanism of FSD-1 using a combination of temperature-dependent UV circular dichroism (UV-CD), Fourier transform infrared (FTIR) spectroscopy, two-dimensional infrared (2D-IR) spectroscopy, and temperature-jump (T-jump) transient-IR spectroscopy. Our UV-CD and FTIR data show different thermal melting transitions, indicating multistate folding behavior. Temperature-dependent 2D-IR spectra indicate that the α-helix is the most stable structural element of FSD-1. To investigate the folding/unfolding re-equilibration dynamics of FSD-1, the conformational changes induced by a nanosecond T-jump are probed with transient-IR and transient dispersed-pump-probe (DPP) IR spectroscopy. We observe biexponential T-jump relaxation kinetics (with time constants of 80 ± 13 ns and 1300 ± 100 ns at 322 K), confirming that the folding involves an intermediate state. The IR and dispersed-pump-probe IR spectra associated with the two kinetic components suggest that the folding of FSD-1 involves early formation of the α-helix, followed by the formation of the ß-hairpin and hydrophobic contacts.


Assuntos
Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Dicroísmo Circular , Proteínas de Ligação a DNA/genética , Cinética , Mutação , Dobramento de Proteína , Espectrofotometria Infravermelho , Temperatura , Fatores de Tempo , Fatores de Transcrição/genética , Dedos de Zinco
14.
Struct Dyn ; 3(5): 054701, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27679804

RESUMO

Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes.

15.
Sci Adv ; 2(8): e1600920, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27536728

RESUMO

Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Fotorreceptores Microbianos/química , Fitocromo/química , Conformação Proteica , Proteínas de Bactérias/metabolismo , Cinética , Fotorreceptores Microbianos/metabolismo , Fitocromo/metabolismo , Relação Estrutura-Atividade
16.
Angew Chem Int Ed Engl ; 54(50): 15255-9, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26490361

RESUMO

Despite its wide use as a denaturant, the mechanism by which guanidinium (Gdm(+) ) induces protein unfolding remains largely unclear. Herein, we show evidence that Gdm(+) can induce denaturation by disrupting salt bridges that stabilize the folded conformation. We study the Gdm(+) -induced denaturation of a series of peptides containing Arg/Glu and Lys/Glu salt bridges that either stabilize or destabilize the folded conformation. The peptides containing stabilizing salt bridges are found to be denatured much more efficiently by Gdm(+) than the peptides containing destabilizing salt bridges. Complementary 2D-infrared measurements suggest a denaturation mechanism in which Gdm(+) binds to side-chain carboxylate groups involved in salt bridges.

17.
J Phys Chem Lett ; 6(17): 3379-83, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26275765

RESUMO

The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.


Assuntos
Bactérias/química , Fitocromo/química , Transdução de Sinais
18.
J Chem Phys ; 142(4): 041103, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25637962

RESUMO

We present a simple method to measure the dynamics of cross peaks in time-resolved two-dimensional vibrational spectroscopy. By combining suitably weighted dispersed pump-probe spectra, we eliminate the diagonal contribution to the 2D-IR response, so that the dispersed pump-probe signal contains the projection of only the cross peaks onto one of the axes of the 2D-IR spectrum. We apply the method to investigate the folding dynamics of an alpha-helical peptide in a temperature-jump experiment and find characteristic folding and unfolding time constants of 260 ± 30 and 580 ± 70 ns at 298 K.

19.
Inorg Chem ; 52(24): 14294-8, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24256078

RESUMO

Catalytic transition-metal complexes often occur in several conformations that exchange rapidly (

20.
Nat Chem ; 5(11): 929-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24153370

RESUMO

The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the 'lubricant of life'.


Assuntos
Acetonitrilas/química , Água/química , Derivados de Benzeno/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Piridinas/química , Rotaxanos/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...